Classroom Reference Guide:

Table of Contents:

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beliefs</td>
<td>1</td>
</tr>
<tr>
<td>Teaching All Kinds of Minds: Quick Reference Glossary</td>
<td>3-4</td>
</tr>
<tr>
<td>Glossary</td>
<td>5-12</td>
</tr>
<tr>
<td>Observable Phenomena</td>
<td>13-17</td>
</tr>
<tr>
<td>Strategies</td>
<td>19-32</td>
</tr>
<tr>
<td>Next Day Applications</td>
<td>33-74</td>
</tr>
<tr>
<td>Turning the Beliefs into Collaborative Classroom Ground Rules</td>
<td>35</td>
</tr>
<tr>
<td>A Quick Game of Cards: A Neurodevelopmental Self Assessment</td>
<td>37-40</td>
</tr>
<tr>
<td>Self Assessment Cards</td>
<td>41-50</td>
</tr>
<tr>
<td>Activity Analysis</td>
<td>51</td>
</tr>
<tr>
<td>Demystification Cards</td>
<td>53-66</td>
</tr>
<tr>
<td>A Conversation Roadmap</td>
<td>67-68</td>
</tr>
<tr>
<td>Hints for Discussing Neurodevelopmental Constructs</td>
<td>69-70</td>
</tr>
<tr>
<td>Common Combinations</td>
<td>71</td>
</tr>
<tr>
<td>Changing it Up with Different Forms of Expression</td>
<td>72</td>
</tr>
<tr>
<td>Evaluation Plan</td>
<td>73-74</td>
</tr>
</tbody>
</table>
Beliefs about Teaching All Kinds of Minds:

Inspire optimism in the face of learning challenges

Discover and treasure unique learning profiles

Eliminate humiliation, blaming and labeling of students

Empower students to find success

Leverage strengths and affinities
ATTENTION
Maintaining mental energy for learning and work
Absorbing and filtering incoming information
Overseeing the quality of academic output and behavior

Mental Energy Controls: Brain Fuel
Maintaining mental energy for learning and work
Being vigilant for intake of information
Allocating a reliable flow of energy

Processing Controls: Directing Input
Absorbing and filtering incoming information
Discriminating between more and less important inputs
Focusing with sufficient intensity and duration
Using incoming information to trigger new ideas and connect with prior knowledge

Production Controls: Overseeing Output
Overseeing the quality of academic output and behavior
Previewing likely outcomes
Inhibiting impulses and working at appropriate rates
Self-monitoring output and work

Conceptualization: Deeply Understanding Ideas
Comprehending concepts, including their critical features
Connecting ideas, even across topics and subjects
Making necessary revisions to concepts based on new information

Creative Thinking
Generating original ideas and potential solutions
Thinking independently

Applied Reasoning: Thinking Through Problems and Challenges
Using logical approaches to address complex problems
Analyzing information to reach solutions that are not readily apparent

LANGUAGE
Understanding incoming oral and written information
Communicating ideas orally and in writing

Receptive Language: Language Input
Understanding incoming oral and written information
Processing the language sounds that compose words
Appreciating the meanings of words and word components
Comprehending sentences and extended pieces of language

HIGHER ORDER COGNITION: Complex Thinking
Comprehending concepts
Generating original ideas
Using logical approaches to address complex problems
Expressive Language / Language Output
- Communicating ideas orally and in writing
- Clearly articulating and speaking with fluency, intonation, and inflection
- Utilizing words and word components
- Building sentences and extended pieces of language
- Using language to develop and extend thoughts

Memory
- Briefly recording new information
- Mentally juggling information while using it to complete a task
- Storing and then recalling information at a later time

Active Working Memory / Mentally Manipulating Information
- Mentally juggling information while using it to complete a task
- Handling simultaneous task components
- Linking short- and long-term intentions and needs

Long-Term Memory Consolidation / Storing Information
- Storing information for recall at a later time
- Using schema, categories, and strategies for effective filing

Long-Term Memory Access / Retrieving Information
- Recalling information after an extended delay, including facts, skills, and experiences
- Recognizing material, such as a multiple-choice option or a face

Neuromotor Functions / Controlling Movement
- Using large muscles in a coordinated manner
- Controlling finger and hand movements
- Coordinating muscles needed for handwriting

Fine Motor Function / Hand Movements
- Controlling finger and hand movements
- Recalling movement patterns
- Getting adequate feedback about hand/finger location during motions

Graphomotor Function / Handwriting Control
- Coordinating muscles needed for handwriting
- Recalling handwriting movement patterns and letter shapes
- Getting adequate feedback about hand/pencil location during writing motions

Social Cognition / Making and Keeping Friends
- Knowing what to talk about, when, with whom, and for how long
- Working and playing with others in a cooperative manner
- Nurturing positive relationships with influential people

Spatial Ordering / Visual Thinking
- Understanding information that is presented visually
- Generating products that are visual
- Organizing materials and spaces

Temporal-Sequential Ordering / Keeping Track of Time/Order
- Understanding the order of steps, events or other sequences
- Generating products arranged in a meaningful order
- Organizing time and schedules
ATTENTION

Maintaining mental energy for learning and work
Absorbing and filtering incoming information
Overseeing the quality of academic output and behavior

Mental Energy Controls | Brain Fuel

Maintaining mental energy for learning and work
Being vigilant for intake of information
Allocating a reliable flow of energy

<table>
<thead>
<tr>
<th>examples of strong function:</th>
<th>examples of weak function:</th>
</tr>
</thead>
<tbody>
<tr>
<td>readily starts working and maintains effort level</td>
<td>has trouble initiating and sticking with tasks</td>
</tr>
<tr>
<td>appears to have sufficient energy when working</td>
<td>appears excessively fatigued when working</td>
</tr>
</tbody>
</table>

Processing Controls | Directing Input

Absorbing and filtering incoming information
Discriminating between more and less important inputs
Focusing with sufficient intensity and duration
Using incoming information to trigger new ideas and connect with prior knowledge

<table>
<thead>
<tr>
<th>examples of strong function:</th>
<th>examples of weak function:</th>
</tr>
</thead>
<tbody>
<tr>
<td>maintains focus for adequate stretches of time</td>
<td>loses focus relatively quickly; susceptible to distractions</td>
</tr>
<tr>
<td>notices key details</td>
<td>misses key details</td>
</tr>
<tr>
<td>makes appropriate connections between new information and prior knowledge</td>
<td>makes tangential connections between new information and prior knowledge</td>
</tr>
</tbody>
</table>
Production Controls: Overseeing Output

Overseeing the quality of academic output and behavior
Previewing likely outcomes
Inhibiting impulses and working at appropriate rates
Self-monitoring output and work

+ examples of strong function:
 - resists impulses
 - plans before starting a task
 - works at an appropriate pace
 - notices and corrects mistakes

- examples of weak function:
 - susceptible to impulses
 - jumps into tasks without sufficient planning
 - rushes through work
 - misses mistakes and opportunities to improve work quality

Higher Order Cognition: Complex Thinking

Comprehending concepts
Generating original ideas
Using logical approaches to address complex problems

Conceptualization: Deeply Understanding Ideas

Comprehending concepts, including their critical features
Connecting ideas, even across topics and subjects
Making necessary revisions to concepts based on new information

+ examples of strong function:
 - understands abstract terms (like due process)
 - describes critical features of ideas (such as a prime number) and processes (like digestion)
 - sees connections between material from different sources (such as history and science)

- examples of weak function:
 - confused by abstract terms (like irony)
 - does not consistently associate ideas with their critical features
 - struggles with making connections between material from different sources
Creative Thinking

Generating original ideas and potential solutions
Thinking independently

+ **examples of strong function:**
 - shows a good imagination for creative writing and artwork
 - finds new or unique ways of solving problems or addressing challenges
 - takes risks with new ideas

- **examples of weak function:**
 - draws heavily from existing sources for ideas, or needs help from others
 - relies heavily on available methods for solving problems
 - conservative with ideas and proposals

Applied Reasoning | Thinking Through Problems and Challenges

Using logical approaches to address complex problems
Analyzing information to reach solutions that are not readily apparent

+ **examples of strong function:**
 - solves problems in systematic ways
 - draws inferences from limited information
 - understands analogies
 - can develop an understanding of an idea by considering its components or connections to other ideas

- **examples of weak function:**
 - haphazardly tries to solve problems
 - struggles with inferencing or “reading between the lines”
 - confused by analogies
 - has trouble understanding new things without considerable support

LANGUAGE | Understanding and Using Words

Understanding incoming oral and written information
Communicating ideas orally and in writing

© 2009 All Kinds of Minds.
Receptive Language | Language Input

Understanding incoming oral and written information
Processing the language sounds that compose words
Appreciating the meanings of words and word components
Comprehending sentences and extended pieces of language

examples of strong function:
- accurate decoding and spelling
- understands words encountered in reading and discussion
- follows extended explanations, even if complex sentence structures are used
- comprehends abstract and figurative language

examples of weak function:
- makes decoding and spelling errors that don’t make sense phonetically (like “widdend” for “wooden”)
- misinterprets word meanings
- confused by explanations, especially with complex sentence structures
- struggles to get past literal interpretations of abstract and figurative language

Expressive Language | Language Output

Communicating ideas orally and in writing
Clearly articulating and speaking with fluency, intonation, and inflection
Utilizing words and word components
Building sentences and extended pieces of language
Using language to develop and extend thoughts

examples of strong function:
- speaks fluently and with appropriate rhythm
- makes good choices about words and can alter words with prefixes and suffixes
- constructs grammatically correct sentences
- crafts extended pieces of language (like reports or presentations) to express thinking

examples of weak function:
- speaks hesitantly or haltingly, perhaps struggling to retrieve words
- uses words inaccurately and has trouble altering words with prefixes and suffixes
- makes grammatical errors
- produces extended pieces of language that are not sufficiently organized or coherent, or that do not elaborate on ideas
MEMORY

Briefly recording new information
Mentally juggling information while using it to complete a task
Storing and then recalling information at a later time

Active Working Memory | Mentally Manipulating Information

Mentally juggling information while using it to complete a task
Handling simultaneous task components
Linking short- and long-term intentions and needs

examples of strong function:
- holds onto beginning of reading passage when reaching the end
- completes multi-step tasks and executes multi-step math procedures
- performs mental math calculations
- handles the many tasks involved in writing (like spelling, punctuation, ideation)

examples of weak function:
- forgets information from beginning of reading passage when reaching the end
- loses track of multiple steps
- struggles with mental math calculations
- has trouble juggling the many tasks involved in writing

Long-Term Memory Consolidation | Storing Information

Storing information for recall at a later time
Using schema, categories, and strategies for effective filing

examples of strong function:
- easily learns new terminology, facts, and procedures
- masters sound-symbol associations for phonics
- recognizes previously encountered patterns

examples of weak function:
- studies by rote, rather than strategically
- has particular trouble with cumulative subjects
- struggles to recall information even when given recognition cues (like multiple choice options)
Long-Term Memory Access | *Retrieving Information*

Recalling information after an extended delay, including facts, skills, and experiences

Recognizing material, such as a multiple-choice option or a face

+ **examples of strong function:**
 - retrieves one half of a pair when given the other half (such as definitions with terms, names with faces)
 - recalls proper procedure for the problem or situation
 - performs well with free-recall (or open-ended) questions

- **examples of weak function:**
 - slow to recall facts
 - uses incorrect procedure for a problem or situation
 - struggles with free-recall questions (but may perform better with recognition items if Long-Term Memory Consolidation is functioning appropriately)

NEUROMOTOR FUNCTIONS | *CONTROLLING MOVEMENT*

Using large muscles in a coordinated manner

Controlling finger and hand movements

Coordinating muscles needed for handwriting

Fine Motor Function | *Hand Movements*

Controlling finger and hand movements

Recalling movement patterns

Getting adequate feedback about hand/finger location during motions

+ **examples of strong function:**
 - skilled at activities requiring manual dexterity, such as typing and playing woodwind instruments or the piano
 - moves finger and hands with smooth coordination
 - can tell where hands/fingers are without watching them during movement

- **examples of weak function:**
 - slow to learn new skills requiring manual dexterity
 - is clumsy with hand and finger movements
 - needs to visually locate hands/fingers during movement
Graphomotor Function: Handwriting Control

Coordinating muscles needed for handwriting
Recalling handwriting movement patterns and letter shapes
Getting adequate feedback about hand/pencil location during writing motions

<table>
<thead>
<tr>
<th>Examples of strong function:</th>
<th>Examples of weak function:</th>
</tr>
</thead>
<tbody>
<tr>
<td>writes letters/numbers smoothly and with consistent formation</td>
<td>shows hesitancy when forming some letters, which may have inconsistent appearance</td>
</tr>
<tr>
<td>handwriting is legible</td>
<td>handwriting has limited legibility, perhaps with excess pressure</td>
</tr>
<tr>
<td>has appropriate endurance for handwriting</td>
<td>hand fatigues quickly when writing</td>
</tr>
<tr>
<td>uses a comfortable handwriting grip</td>
<td>needs to watch hand and pencil closely when writing</td>
</tr>
<tr>
<td></td>
<td>uses an awkward handwriting grip</td>
</tr>
</tbody>
</table>

Social Cognition: Making and Keeping Friends

Knowing what to talk about, when, with whom, and for how long
Working and playing with others in a cooperative manner
Nurturing positive relationships with influential people

<table>
<thead>
<tr>
<th>Examples of strong function:</th>
<th>Examples of weak function:</th>
</tr>
</thead>
<tbody>
<tr>
<td>collaborates effectively</td>
<td>is too pushy or too detached during group work</td>
</tr>
<tr>
<td>chooses appropriate topics to talk about and navigates the “give & take” of conversation</td>
<td>brings up topics that are at odds with an existing discussion</td>
</tr>
<tr>
<td>detects the mood of others</td>
<td>dominates conversations or is too passive</td>
</tr>
<tr>
<td>shows appropriate appreciation for others’ viewpoints and interests</td>
<td>does not pick up signals about the mood of others</td>
</tr>
<tr>
<td></td>
<td>shows little appreciation for others’ viewpoints or interests</td>
</tr>
</tbody>
</table>
SPATIAL ORDERING | VISUAL THINKING

Understanding information that is presented visually
Generating products that are visual
Organizing materials and spaces

examples of strong function:
- readily makes sense of maps, graphs, diagrams, and symbols
- draws or copies well
- good at building and fixing things
- organizes belongings and places like desk, locker, and room

examples of weak function:
- misinterprets visual information or needs support to understand it
- struggles with drawing, copying with appropriate accuracy, building, or fixing things
- cluttered or disheveled backpack, binder, or room

TEMPORAL-SEQUENTIAL ORDERING | KEEPING TRACK OF TIME/OFFER

Understanding the order of steps, events or other sequences
Generating products arranged in a meaningful order
Organizing time and schedules

examples of strong function:
- accurately follows sequential procedures and instructions
- learns sequential information like timelines
- presents ideas in a clear, serial order
- good at planning projects in stages and organizing schedules

examples of weak function:
- confuses steps of procedures and instructions
- has trouble learning sequences like the process of photosynthesis
- presents ideas out of logical serial order
- struggles with planning things out; rushes to meet deadlines or misses them
<table>
<thead>
<tr>
<th>Examples of Weak Function</th>
<th>Neurodevelopmental Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>appears excessively fatigued when working</td>
<td>Mental Energy Controls [Brain Fuel]</td>
</tr>
<tr>
<td>brings up topics that are at odds with an existing discussion</td>
<td>Social Cognition [Making and Keeping Friends]</td>
</tr>
<tr>
<td>cluttered or disheveled backpack, binder, or room</td>
<td>Spatial Ordering [Visual Thinking]</td>
</tr>
<tr>
<td>confused by abstract terms (like irony)</td>
<td>Conceptualization [Deeply Understanding Ideas]</td>
</tr>
<tr>
<td>confused by analogies</td>
<td>Applied Reasoning [Thinking through Problems and Challenges]</td>
</tr>
<tr>
<td>confused by explanations, especially with complex sentence structures</td>
<td>Receptive Language [Language Input]</td>
</tr>
<tr>
<td>confuses steps of procedures and instructions</td>
<td>Temporal-Sequential Ordering [Keeping Track of Time/Order]</td>
</tr>
<tr>
<td>conservative with ideas and proposals</td>
<td>Creative Thinking</td>
</tr>
<tr>
<td>does not consistently associate ideas with their critical features</td>
<td>Conceptualization [Deeply Understanding Ideas]</td>
</tr>
<tr>
<td>does not pick up signals about the mood of others</td>
<td>Social Cognition [Making and Keeping Friends]</td>
</tr>
<tr>
<td>dominates conversations or is too passive</td>
<td>Social Cognition [Making and Keeping Friends]</td>
</tr>
<tr>
<td>draws heavily from existing sources for ideas, or needs helps from others</td>
<td>Creative Thinking</td>
</tr>
<tr>
<td>Examples of Weak Function</td>
<td>Neurodevelopmental Function</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>forgets information from beginning of reading passage when reaching the end</td>
<td>Active Working Memory [Mentally Manipulating Information]</td>
</tr>
<tr>
<td>hand fatigues quickly when writing</td>
<td>Graphomotor Function [Handwriting Control]</td>
</tr>
<tr>
<td>handwriting has limited legibility, perhaps with excess pressure</td>
<td>Graphomotor Function [Handwriting Control]</td>
</tr>
<tr>
<td>haphazardly tries to solve problems</td>
<td>Applied Reasoning [Thinking through Problems and Challenges]</td>
</tr>
<tr>
<td>has particular trouble with cumulative subjects</td>
<td>Long-Term Memory Consolidation [Storing Information]</td>
</tr>
<tr>
<td>has trouble initiating and sticking with tasks</td>
<td>Mental Energy Controls [Brain Fuel]</td>
</tr>
<tr>
<td>has trouble juggling the many tasks involved in writing</td>
<td>Active Working Memory [Mentally Manipulating Information]</td>
</tr>
<tr>
<td>has trouble learning sequences like the process of photosynthesis</td>
<td>Temporal-Sequential Ordering [Keeping Track of Time/Order]</td>
</tr>
<tr>
<td>has trouble understanding new things without considerable support</td>
<td>Applied Reasoning [Thinking through Problems and Challenges]</td>
</tr>
<tr>
<td>is clumsy with hand and finger movements</td>
<td>Fine Motor Function [Hand Movements]</td>
</tr>
<tr>
<td>is too pushy or too detached during group work</td>
<td>Social Cognition [Making and Keeping Friends]</td>
</tr>
<tr>
<td>jumps into tasks without sufficient planning</td>
<td>Production Controls [Overseeing Output]</td>
</tr>
<tr>
<td>Examples of Weak Function</td>
<td>Neurodevelopmental Function</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>loses focus relatively quickly; susceptible to distractions</td>
<td>Processing Controls [Directing Input]</td>
</tr>
<tr>
<td>loses track of multiple steps</td>
<td>Active Working Memory [Mentally Manipulating Information]</td>
</tr>
<tr>
<td>makes decoding and spelling errors that don’t make sense phonetically (like “widdend” for “wooden”)</td>
<td>Receptive Language [Language Input]</td>
</tr>
<tr>
<td>makes grammatical errors</td>
<td>Expressive Language [Language Output]</td>
</tr>
<tr>
<td>makes tangential connections between new information and prior knowledge</td>
<td>Processing Controls [Directing Input]</td>
</tr>
<tr>
<td>misinterprets visual information or needs support to understand it</td>
<td>Spatial Ordering [Visual Thinking]</td>
</tr>
<tr>
<td>misinterprets word meanings</td>
<td>Receptive Language [Language Input]</td>
</tr>
<tr>
<td>misses key details</td>
<td>Processing Controls [Directing Input]</td>
</tr>
<tr>
<td>misses mistakes and opportunities to improve work quality</td>
<td>Production Controls [Overseeing Output]</td>
</tr>
<tr>
<td>needs to visually locate hands/fingers during movement</td>
<td>Fine Motor Function [Hand Movements]</td>
</tr>
<tr>
<td>needs to watch hand and pencil closely when writing</td>
<td>Graphomotor Function [Handwriting Control]</td>
</tr>
<tr>
<td>presents ideas out of logical serial order</td>
<td>Temporal-Sequential Ordering [Keeping Track of Time/Order]</td>
</tr>
</tbody>
</table>
Observable Phenomena

Examples of Weak Function
- Produces extended pieces of language that are not sufficiently organized or coherent, or that do not elaborate on ideas
- Relies heavily on available methods for solving problems
- Rushes through work
- Shows hesitancy when forming some letters, which may have inconsistent appearance
- Shows little appreciation for others’ viewpoints or interests
- Shows little appreciation for others’ viewpoints or interests
- Shows little appreciation for others’ viewpoints or interests
- Shows little appreciation for others’ viewpoints or interests
- Slow to learn new skills requiring manual dexterity
- Slow to recall facts
- Speaks hesitantly or haltingly, perhaps struggling to retrieve words
- Struggles to get past literal interpretations of abstract and figurative language
- Struggles to recall information even when given recognition cues (like multiple choice options)
- Struggles with drawing, copying with appropriate accuracy, building, or fixing things
- Struggles with free-recall questions (but may perform better with recognition items if Long-Term Memory Consolidation is functioning appropriately)

Neurodevelopmental Function
- **Expressive Language** [Language Output]
- **Creative Thinking**
- **Production Controls** [Overseeing Output]
- **Graphomotor Function** [Handwriting Control]
- **Social Cognition** [Making and Keeping Friends]
- **Fine Motor Function** [Hand Movements]
- **Long-Term Memory Access** [Retrieving Information]
- **Expressive Language** [Language Output]
- **Receptive Language** [Language Input]
- **Long-Term Memory Consolidation** [Storing Information]
- ** Spatial Ordering** [Visual Thinking]
- **Long-Term Memory Access** [Retrieving Information]
<table>
<thead>
<tr>
<th>Examples of Weak Function</th>
<th>Neurodevelopmental Function</th>
</tr>
</thead>
</table>
| struggles with inferencing or “reading between the lines” | Applied Reasoning
[Thinking through Problems and Challenges] |
| struggles with making connections between material from different sources | Conceptualization
[Deeply Understanding Ideas] |
| struggles with mental math calculations | Active Working Memory
[Mentally Manipulating Information] |
| struggles with planning things out; rushes to meet deadlines or misses them | Temporal-Sequential Ordering
[Keeping Track of Time/Order] |
| studies by rote, rather than strategically | Long-Term Memory Consolidation
[Storing Information] |
| susceptible to impulses | Production Controls
[Overseeing Output] |
| uses an awkward handwriting grip | Graphomotor Function
[Handwriting Control] |
| uses incorrect procedure for a problem or situation | Long-Term Memory Access
[Retrieving Information] |
| uses words inaccurately and has trouble altering words with prefixes and suffixes | Expressive Language
[Language Output] |
Strategies

The following management strategies include accommodations (intended to by-pass a weakness) and interventions (intended to improve a weakness). This list represents just a sampling of potential learning strategies. Strategies appear only once, but could be used for more than one function or academic skill. All strategies are supported by the literature or sound educational principles.

Understanding Ideas: Listening Comprehension

Attention: Mental Energy Controls

- Routinely change up modalities, such as switching back and forth from a highly verbal presentation to a nonverbal activity; preview such shifts so that students know how long they have to maintain their alertness before a transition
- Allow as much movement as possible while students are working, such as standing at desks or using fidget objects (like a bean bag that can be manipulated, but that won’t roll or bounce)
- Create purposeful breaks such as collecting papers, passing out materials, erasing the board, or posting lesson objectives

Attention: Processing Controls

- Give verbal advanced warnings about important upcoming information, such as presenting information in numbered lists (like, “I’m going to tell you about 3 important ideas today. First, . . .”)
- Provide partially completed graphic organizers or lecture outlines for note-taking; embed cues in graphic organizers or outlines, such as numbering slots for key details
- Pair students with note-taking partners for checking each other’s notes and filling in gaps

Higher Order Cognition: Conceptualization

- Emphasize the comparing and contrasting of ideas, such as by modeling how ideas are similar and how they are different; ask students to create compare/contrast tables
- Color code information (like shared attributes of science concepts in green, geometry theorems in blue, and main ideas of a story in red)
- Present new information by moving from the global or general toward the more detailed or specific, in order to provide context; for example, show a video about a famous author and discuss his life before reading specific works; describe the brain in relation to the entire body, as a separate organ, and then move to specific parts of the brain
Language: Receptive

- Provide visual aids (such as illustrations, charts, and tables) that relay the same information as the lecture or class discussion
- Deconstruct new vocabulary into roots, prefixes, and suffixes, and connect to related words
- Have students maintain a running list of unknown words heard during lectures or discussions that can be reviewed later
- Ask students to determine alternative meanings for the same sentence or have them make up sentences that can have two meanings (like, “The coach had to go to her bench.”); also, place the same word in different sentences and have students identify different meanings of that word based on the context

Memory: Active Working

- Show different ways of using shorthand (like abbreviations or arrows) to quickly condense information into written notes
- Display outlines for students to refer to when summarizing key points of a lesson
- Give directions with short, declarative sentences and basic vocabulary; use key words or phrases on a consistent basis so that students become familiar with the format of directions

Temporal-Sequential Ordering

- Give directions in as few brief steps as possible, numbering each step and reviewing the sequence multiple times; ask students to repeat or paraphrase directions
- Be transparent about the kinds of conceptual sequences students encounter, such as temporal (like a historical timeline), causal chain (like pollutants entering a watershed), procedural (steps in a lab experiment), and narrative (as in a short story)
- Support sequential information with visual representations like diagrams, flowcharts, and timelines

Understanding Ideas: Reading Comprehension

Attention: Processing Controls

- Coach students to use a color-coding system when reading; for example, main ideas could be underlined in red, details highlighted in blue, and new vocabulary terms highlighted in yellow; provide a passage that models the color-coding system
• Employ directed reading activities to promote deeper engagement with the text; for example, set up a scavenger hunt in which the students need to find certain pieces of information or a specific number of facts in a reading assignment; end-of-chapter questions can be used for this purpose
• Ask students to develop their own questions to answer from their reading

Higher Order Cognition: Applied Reasoning
• Engage students in conversations about their reasoning by asking “why,” “how,” and “what if” questions
• Push students to justify answers and support assertions; have them ask themselves, “How do I know this answer or position is right?” or “What evidence do I have for my position?”; provide practice with supporting assertions with very basic and low-stakes scenarios like, “What is the evidence that we’re in the winter season?” or “Why do we think seeing a movie at a theatre is better than on television?”
• Model if-then thinking and apply it with historical and political events; then have students make predictions before learning the actual outcomes

Higher Order Cognition: Conceptualization
• Require students to list a concept’s critical features (like what defines an amphibian), as well as several examples (like a frog) and non-examples (like a snake) of concepts
• Whenever possible, ask students to diagram concepts, labeling them with key features
• Ask students how they will represent information from reading assignments and require them to use different formats, such as flowcharts for the legislative process or tables for comparing and contrasting key ideas (like capitalism and socialism)

Language: Receptive
• Describe typical text organization patterns, such as definition/example, compare/contrast, cause-effect, sequence (temporal, procedural), listing, description; teach key words associated with each pattern and demonstrate graphic organizers well-suited for each
• Have students create their own dictionaries, perhaps with illustrations for some terms; words might be categorized according to similarities in meaning
• Use error detection activities (or “find the mistakes”) to reinforce understanding of language elements
• Have students collect idioms and figures of speech, including possible meanings; matching idioms with meanings also can be the basis of a game
• Provide opportunities for comparing the meaning of sentences that involve changes in word order
Memory: Active Working

- Have students jot down significant information from textbooks on adhesive notes that can be pulled from the book later when studying
- Examine reading assignments and determine where passages can be broken into sections, then require students to summarize or paraphrase after each section, rather than waiting until the end

Memory: Long-Term Consolidation

- Teach students to transform content when taking notes; for example, place information into self-made tables or diagrams
- Connect reading material to student’s lives and daily experiences
- Preview the highest priority points to glean from reading material, such as those likely to be discussed in class or asked about on a test
- Coach students to use active reading techniques (such as FACT: Focus-Ask questions-Connect ideas-Try to picture ideas)

Memory: Long-Term Access

- Cue prior knowledge for students, such as by reviewing previously covered material that will relate to the reading assignment
- Require students to self-test information likely to be used later, such as with end-of-chapter questions or by developing their own practice tests

Spatial Ordering

- Provide practice with matching reading passages with corresponding illustrations, outlines, or graphic organizers
- Preview reading assignments for graphics and diagrams
- Provide direct instruction in how to make the most of a textbook’s visual features, such as previewing from section objectives and headers, cross-referencing with figures and tables, using sidebars and information in margins, and prioritizing italicized terms
- Magazines, newspapers, and websites include many graphs and diagrams for practicing interpretation of visual material

Producing and Communicating Ideas: Writing

Attention: Mental Energy Controls

- Emphasize a staged writing process, that segments tasks even more than for most other students: topic selection, brainstorming, data collection, planning, organizing and outlining, initial drafting, elaborating, revising, editing, rewriting, and proofing
• Separate the stages so that relatively little work is done during a given work session
• Allow some writing assignments to be abbreviated, such as exchanging a bulleted list for a full text essay

Attention: Production Controls

• Employ proofreading strategies such as COPS: Capitalization-Organization-Punctuation-Spelling
• Error detection games can provide proofreading practice
• Have students set a letter grade goal or other measure of work quality and have them self-grade or self-appraise before turning it in; if the self-grade is consistent with the teacher appraisal, bonus points might be awarded

Higher Order Cognition: Creative Thinking

• Use story starter activities or collaborative writings where students contribute a certain portion of a story
• Promote a sequenced creative process:
 1. become familiar with the problem or product to be created, collecting background information; the goal of this step is not to solve the problem, but to become intrigued, baffled, and possibly even frustrated
 2. set aside the problem or initial idea so that no conscious effort is expended on the task; continuously working on a big problem can undermine the creative process; ideas may emerge during unstructured time
 3. let inspiration come when a good sense of the solution and/or the path to take in order emerges
 4. verify the solution by putting it into action; this is an intense period of work during which mental effort is expended to solve the problem or complete the project

Language: Expressive

• Have students keep a list of typical synonyms, antonyms, and homonyms handy for writing assignments
• Give students incomplete sentences to finish (at first perhaps giving multiple-choice options) and sets of sentences to combine; similarly, have students complete paragraphs or stories, or put whole paragraphs into a logical order to tell a story or explain content
• Incorporate different types of essay questions and key words (such as compare and contrast, trace the development, describe, discuss, define and give examples); show how responses could be organized and have students practice responding to each type
Memory: Active Working

- Have students keep writing reference materials on-hand, such as sentence starters, vocabulary lists, model sentences for punctuation, topic outline, and proofreading rubrics like COPS
- Coach students to make full use of word processing features, such as how to move blocks of text, simultaneously view multiple windows of the same document, and look up words in the thesaurus
- Allow students to substitute oral presentations for some written work

Neuromotor Functions: Fine Motor

- Allow students to use voice activation software instead of writing by hand or keyboarding

Neuromotor Functions: Graphomotor

- Allow students to use a pencil rather than a ballpoint pen, since a pencil provides more friction with the paper, will not smear as easily, and usually has a cleaner erase quality
- Although an unconventional pencil grip may not cause a student discomfort or lead to illegibility, adjusting a grip can be accomplished by placing a rubber band, piece of tape, or colored lines on the pencil to provide a reminder for finger placement; rubber grips can also be placed on pencil shafts to alter finger positioning
- Coach students on overall body positioning for handwriting: steadying the writing arm on the desk or table, sitting in a stable position, securing the paper with the non-writing hand

Spatial Ordering

- Experiment with different types of paper (such as regular lined, center lined, graph, large-spaced) that is best for students to write and work on, and use it consistently
- Ask students to describe visual material with words

Temporal-Sequential Ordering

- Assign long-term projects one step at a time and check progress before assigning the next step; students often benefit from breaking a step into even smaller sub-steps when working on complex long-term assignments
- Separately evaluate each step of multistage tasks
- Utilize computer software programs that facilitate planning, organizing, and outlining written reports; some programs produce diagrams (like graphic organizers and flowcharts) and sequential outlines, and convert material from one to the other
• When sequences are critical to a written assignment, have students first outline in flowcharts with numbered arrows clearly delineating the series of events or steps

Producing and Communicating Ideas: Oral Presentations and Interactions

Attention: Production Controls

• Provide explicit structure for planning (like stating, “Plan for 20 minutes before starting to work.” or “Every 5-10 minutes you will need to stop and check to see if your plan is still working.”)
• Have students share their plans with each other, and provide feedback, before starting to work
• Provide direct instruction in setting goals, including breaking projects into series of mini-tasks
• Collaborate with students to create the scoring/grading guidelines that will be used to evaluate their work

Higher Order Cognition: Creative Thinking

• Leverage the creativity of peers, who can be role models for students who struggle with generating original ideas
• Establish a “risk-free” zone in which students can submit, anonymously if they prefer, to the teacher or class any idea they have with the understanding that it will not be criticized- only encouraged or expanded upon
• Have students list new ideas in a journal, possibly designating silent times for creative thinking and journaling

Language: Expressive

• After students have had time to think about an idea, ask them to talk about it; games can be played where they must discuss an idea for a specified amount of time
• Develop vocabulary with word games like crossword puzzles, password, and 20 questions
• Provide choice of formats when students are required to show knowledge; possibilities include diagrams, bulleted lists, photo essays, models, collages, and mobiles

Memory: Active Working

• Sub-divide large task into smaller, shorter, and less complex “mini-tasks”
• Have students get their thoughts on paper for reference, rather than relying on keeping ideas in their heads
Memory: Long-Term Consolidation

- Coach students to use strategies for storing information, such as mental imagery (like associating a top hat with President Lincoln), acronyms (like HOMES for the Great Lakes), acrostic elaboration (like “King Philips Court . . .” for Kingdom-Phylum-Class), and rhyming (like “i” before “e” except after “c”); such strategies can be used to prompt students to retrieve information during presentations and interactions.
- Provide study buddies and small group practice; teams can review information learned weeks or months earlier, which is especially important in courses that are cumulative.

Memory: Long-Term Access

- Balance open-ended questions with true/false, multiple choice, and matching items (all of which provide cues for memory access), both on tests/quizzes and during discussions.
- Start with tasks that tap recognition memory (like multiple choice) and then move to recall memory items (like fill-in-the-blank).
- Provide advanced warning before calling on students or give them upcoming questions to prepare in advance.

Social Cognition

- Assign specific roles to individuals for group projects, ideally suited to each student’s strengths and interests.
- Have students establish their own ground rules (such as “no put-downs”) for group projects.
- Before groups begin working together, have the whole class brainstorm potential pitfalls to a successful project (such as someone being bossy) as well as strategies for handling those pitfalls (such as reminding that person that the entire group makes decisions, not just one person).
- Debrief group project work with students, asking them to consider what went well (and why) and what could have been done better.

Getting Along with Others

Attention: Production Controls

- Provide practice with thinking ahead and making predictions about social situations, such as by posing questions like, “What would happen if you told some kids that you didn’t want to play with them during recess?” or “What if you told your reading partner that he was doing a good job?”
• Give students plenty of positive reinforcement whenever they inhibit impulses and make good choices in social situations; accompany praise with explanation for why a choice was good

• Help students who have a hard time self-monitoring during social situations by covertly pointing out clues from other students (such as voice level or body language) about how successfully they are interacting

Language: Receptive

• Have students develop and maintain a social language dictionary that includes definitions and uses of terms, phrases, and lingo

• Use role play to give students practice interpreting social language; for example, make statements like, “That was just ridiculous,” and talk about different meanings they might have in social contexts

• Practice conversational turn-taking with games; for example, make a somewhat ambiguous statement like, “I don’t know about that test tomorrow,” and have the student come up with appropriate things to say in response

Language: Expressive

• Identify the conversational styles expected from different audiences (such as friends, teachers, relatives) and have students list the language that should and shouldn’t be used with these groups

• Provide positive reinforcement when students appropriately switch their language to meet the expectations of new and different settings (like switching from playground lingo to classroom language); role-play can be used to practice making such switches

• Give students brief scripts that they can memorize and use to navigate social situations (like entering a game or activity that has already started or resolving an argument); scripts should be rehearsal before put to use

Social Cognition

• Using movies, television, multimedia, or role play, have students read the nonverbal cues that help reveal a person’s feelings or image they are trying to project

• Provide practice with taking others’ perspectives by having students repeatedly act out the same social scene, but assuming different roles each time

• Help students reflect back on social interactions; discuss what they did or said that was positive and what could have been done more effectively

• Use creative writing to get students to think about tactics for initiating and maintaining positive relationships; for example, have students write about scenarios such as how a new kid in school made new friends

• Establish a small set of target behaviors, such as giving compliments to peers, and provide reinforcements for those behaviors; positive reinforcement generally works best when the student participates in determining both the target behaviors and the rewards
Reading Decoding

Attention: Processing Controls

- Cloze activities can help students read more closely for detail; for example, conceal parts of words or whole words in a passage so that the student has to carefully use context clues
- Highlight specific words in reading materials, such as five to six challenge words (depending on the length of the text) on which the student should focus; these words might include unusual letter patterns (like “answer”), multiple syllables, or vocabulary terms from previous material
- Minimize or simplify the amount of material viewed at once; this can be accomplished with a line guide, books with enlarged text, or by covering parts of the page; when creating worksheets, increase the font size, place as little material on each page as possible, and leave plenty of white space

Language: Receptive

- Listening games can strengthen sound discrimination, with students identifying words that begin or end with the same sound, begin or end with different sounds, have similar or dissimilar middle sounds, contain short or long vowel sounds, etc.
- Develop sound segmentation with activities such as identifying the number of syllables in words; the number of sounds in words; and the sounds heard at the beginning, middle, and end of words
- Have students collect words that follow specific sound patterns (like tree, free, agree) in a personal dictionary
- Cloze spelling practice can improve decoding skill, such as filling in missing letters (such as C_T) after hearing a complete word (such as “cat,” “cot,” or “cut”).

Memory: Long-Term Consolidation

- Provide extra instruction and practice regarding the multiple letter patterns (such as “k,” “c,” “ck,” “ch,” “que”) that can be linked with a particular sound (like /k/)
- Explicitly teach and reinforce decoding rules (like how silent “e” generates long vowel sounds)
- Emphasize word families (like take, bake, rake, fake, etc.) to consolidate common letter patterns (such as –ake) and vary words with prefixes and suffixes (like taking, baking, raking, faking, etc.)
• Nonsense words (such as “bik”) can bolster sound-symbol pairs in long-term memory because they have to be sounded out rather than identified as sight words; students can practice reading nonsense words or even develop their own

Thinking with Numbers

Attention: Processing Controls
• Have students highlight or circle all math operation signs as an initial step, before starting to solve any problems
• Provide practice identifying key details in word problems by giving problems that have a large number of extra details that students have to eliminate

Attention: Production Controls
• Coach and reinforce the use of stepwise plans for solving math problems, such as:
 1. Read the problem and visualize the situation
 2. Reread the problem for details
 3. Pick a strategy
 4. Estimate the answer
 5. Perform the calculations
 6. Compare the answer to the estimated answer
• Have students color code problems before attempting any; for example, blue might mean, “appropriate for mental math” and yellow could indicate, “all steps need to be written”; check to see that problems have been accurately coded
• Provide self-monitoring practice by giving students completed problems that contain errors and having them identify and correct the errors

Higher Order Cognition: Applied Reasoning
• Ask students to create their own math problems, including an answer key, possibly related to affinities
• Have students talk through their approaches to solving problems, possibly asking them probing questions like, “Why do you think that was the right way to set up the problem?” or “What might have been another way to get to the same answer?”
• Provide feedback and reinforcement for more than just the final answer; for example students might also earn points for identifying the type of problem and for setting it up
Higher Order Cognition: Conceptualization

- Show how math concepts are defined by critical attributes; for example, the critical attributes of integers include being a natural number, the negative of a natural number, or 0; highlight and reinforce such attributes, as well as examples (like “7” for integers) and non-examples (like “7½” or “7.5”); also, emphasize how newly introduced concepts are similar or dissimilar to previously introduced concepts (like natural numbers or counting numbers).
- Students could maintain a math concept journal that includes critical attributes, examples/non-examples, and connections to related concepts; concepts could be represented in tables or in concept maps (concept name in the center circle, arrows emanating to different aspects of the concept); a concept journal could be digital, and concept maps can be made with software programs that generate diagrams.

Memory: Active Working

- Have students practice mental math computations, possibly using problems from real situations like shopping or going to the movies.
- Allow calculators or fact grids on multi-step problems or when computations are especially complex.

Memory: Long-Term Consolidation

- Show students how to make a flowchart that breaks down a procedure into its component parts.
- Ask students to explain the steps of a procedure orally and in writing.
- Use acronyms or phrases to improve storage of procedural sequences, such as PEMDAS or “Please Excuse My Dear Aunt Sally” for the order of operations: Parenthesis, Exponents, Multiplication/Division, Add/Subtract.

Memory: Long-Term Access

- Encourage physical counting strategies for math computation, like touch math or multiplication finger tricks.
- Provide practice with matching illustrations/diagrams with math word problems or fractions.

Spatial Ordering

- Encourage parents to cook with their children in order to develop visual appreciation of quantity (such as measuring cups).
- Use graph paper or vertically lined paper to help guide alignment of math work; this also strengthens understanding of number order and place value.
- Provide concrete representation of part: whole relationships, size, and quantity to enhance comprehension of spatial ideas; examples include Cuisenaire rods, math blocks, and form boards.
Temporal-Sequential Ordering

- Provide model solved problems for reference, including clearly numbered procedural steps
- To help students understand and solve elapsed time problems, construct a timeline that displays hours (and 15 minute increments for older students); thinking in terms of a face clock can be confusing, and timelines more clearly illuminate time as a sequence; it could be shaded to differentiate a.m. and p.m. and would look similar to a ruler, with hours marked by larger numbers and thicker lines:

| 1:00 pm | 1:15 pm | 1:30 pm | 1:45 pm | 2:00 pm |

Getting Organized and Good Work Habits

Attention: Processing Controls

- Encourage students to set up a consistent work space at home, as free from distractions as possible, where they keep necessary supplies and materials
- Use a consistent format for organizing information on the board, such as writing homework assignments in the same order and in the same place each day

Attention: Production Controls

- A positive reinforcement system (such as earning points for meeting work objectives) can promote organization and productivity; objectives should be specific and within the student’s control; the student should have input into both the objectives and the rewards
- Rather than grading/evaluating just finished products, provide feedback at several time points or stages (such as the outline, rough draft, and final draft)

Spatial Ordering

- Color code items to reinforce instructions (for instance, green folders for work to be taken home, red folders for work to keep in the classroom)
- Label handouts with sections and page numbers to assist students in organizing their binders; punch holes in handouts before distributing them
- Have students begin project work by first listing the materials that will be needed, collecting those materials, and then organizing them
• Pair a disorganized student with someone more organized for support and modeling

Temporal-Sequential Ordering

• Ask student to estimate how much time tasks will take, time how long they do spend on tasks, and then compare; debrief with them, including significant disparities between estimated and actual time
• Demonstrate how to make up a study schedule for an evening or a week, possibly providing model schedules for reference
• Provide explicit feedback to students after each stage in a task or project, including how to work more efficiently or adjust their schedules, if needed
Next Day Applications
Next Day Application: Turning the Beliefs into Collaborative Classroom
Ground Rules

The Beliefs about Teaching All Kinds of Minds resonate for students as powerfully as they
do for adults. Introducing these beliefs in the classroom and suggesting them as ground
rules for working and learning together can magnify the positive energy and positive
changes for students of all ages. Use the process that follows and see the results.

STEP 1: Revise the text to create a version of the Beliefs that will make sense to your
students. Below is one suggested version that will be understood by most students
regardless of age.
 - Know everyone can
 - Differences are OK
 - Don’t embarrass others
 - Know strengths and interests
 - Take charge of learning

STEP 2: Set aside 30 minutes of instructional time with all students when attention and
focus are greatest. (Note: You may also schedule two 15 minute sessions. Session 1
would cover steps 4 and 5 while Session 2 would cover steps 6-8.)

STEP 3: Create a chart with your student version of the Beliefs about Teaching All Kinds of
Minds.

STEP 4: Introduce your student version of the Beliefs about Teaching All Kinds of Minds as
a set of principles you believe in and that you believe will help everyone in your class be as
happy and successful as possible.

STEP 5: Discuss each Belief as appropriate for your students, highlighting:
 - What the Belief means
 - How it will help the student to apply it to him/herself
 - How it will help if the student applies it to others

STEP 6: Divide the class into five groups, assigning a different Belief to each group and
distributing chart paper and colored markers.

STEP 7: Have each small group:
 - Brainstorm specific ways that this Belief can be put into action at school
 - Determine which ideas might be most helpful to use as ground rules in class
 - Capture the 3-4 top ideas legibly on the chart paper provided and post your
charts for other groups to see
 - Share their lists with the whole class

STEP 8: Gain agreement that the students will try to follow these Beliefs and ground rules
and provide feedback and positive reinforcement when you see this done.

1 Younger students may benefit from drawing pictures, demonstrating or producing a short skit.
A Quick Game of Cards: A Neurodevelopmental Self Assessment

The following outline summarizes the self assessment card game you participated in during attendance at Teaching All Kinds of Minds. It is an excellent way to introduce the neurodevelopmental framework to your whole class or groups of students.

To prepare you will need to produce half as many decks of cards as you have students participating. For example, if you have 28 students you’ll need 14 decks. If you have 16 students you’ll need 8 decks. Once you have produced the decks, put all the cards together and shuffle them so they can be distributed at random.

DISTRIBUTE approximately 7 Self Assessment Cards to each participant randomly and place the remaining piles around the room in locations that can be easily accessed by participants.

EXPLAIN to students that:
- The objective of the activity is to create a ‘hand’ of 5 cards that best describe them by reviewing the side with the statements on each.
- Learning profiles are always in transition, so they should select the cards that describe them today.
- There is no right or wrong, better or worse judgment attached to any of the statements.
- They should move around the room, review as many cards as possible.
- Trade with other students.
- Take from piles around the room.
- Discard unnecessary cards.
- Even use the blanks to write in statements from other cards they cannot secure through trading.

ALLOW about 15 minutes to complete the activity.

DISCUSS the experience by asking questions such as:
- How many of you found it easy to select your 5 cards?
- For those who didn’t find it easy, what made the task challenging?

EXPLAIN to students:
• The cards you selected provide a window to you as learners.
• The back of each card has a symbol on it.
• The symbol relates to a part of a framework that lets us know how our minds work.
• When we know how our minds work best we can help ourselves be the best learners we can be.

REVIEW AND DISCUSS what follows adjusting it to fit the needs of your students.
You may choose to focus on one construct at a time.

ATTENTION-
ASK:
• How might this image relate to attention?
EXPLAIN:
• Attention is like the brain’s dashboard. It does three main things. First, attention supplies fuel for thinking, working, and learning. Second, it directs the huge amounts of input arriving through our senses. Third, it oversees the brain’s various outputs, such as completing academic tasks and making decisions about how to behave.

MEMORY-
ASK:
• How might this image relate to memory?
EXPLAIN:
• Memory is the brain’s storage system. It handles information that varies in format and size. Incoming information is stored in small sizes for brief durations, like the “In” box on a desk. The desktop is where information is manipulated and organized for current use. A filing cabinet is used for storing and finding information over the long-term.
LANGUAGE-
ASK:
• How might this image relate to language?
EXPLAIN:
• Language has two sides: input and output. Input takes forms like listening and reading, whereas output is usually speaking and writing. Language also contains specific components that vary in size and that build on one another.

TEMPORAL SEQUENTIAL ORDERING-
ASK:
• How might this image relate to temporal sequential ordering?
EXPLAIN:
• The mind often thinks about information in a sequential way, when the serial or linear order of components is critical to overall meaning. Examples include understanding the order of steps, events or other sequences; generating products arranged in a meaningful order; and organizing time and schedules.

SPATIAL ORDERING-
ASK:
• How might this image relate to spatial ordering?
EXPLAIN:
• The mind often thinks about information in a visual and/or spatial way, when components form a cohesive whole. Examples include understanding information that is presented visually, generating products that are visual, and organizing materials and spaces.

NEUROMOTOR FUNCTION-
ASK:
• How might this image relate to neuromotor function?
EXPLAIN:
• The mind has connections with the muscles of the body to control movements. These connections run both ways - the mind sends out directions and the muscles send back information about movement location. Movements can be large and involve big muscles or be small and involve just fingers and hands.

SOCIAL COGNITION -
ASK:
• How might this image relate to social cognition?
EXPLAIN:
• Interacting with other people requires a lot of thinking, including interpreting social information (like reading contexts) and deciding the best thing to say or do in a situation. Examples include navigating the give-and-take of conversation, working cooperatively, and nurturing positive relationships.

HIGHER ORDER COGNITION -
ASK:
• How might this image relate to higher order cognition?
EXPLAIN:
• The most complex, sophisticated kind of thinking is handled by higher order cognition. Because it is multi-faceted, higher order cognition is like a set of turning cogs. Examples of higher thinking include comprehending concepts, generating original ideas, and using logical approaches to address complex problems.

EXPLAIN:
• The cards you selected represent some of your strengths.
• Multiple cards with the same symbol may indicate a significant strength.
• The absence of certain symbols doesn’t necessarily indicate a weakness.
I stick with demanding work without brain fatigue setting in.

I can keep my focus and steer clear of distractions.

I routinely control impulses, plan, take my time, and check my work.

I remember processes and work well with them.

I am comfortable following steps and sequences.

Numbered lists and sequences help keep me on track.
I am drawn toward visual and graphical material.

I easily recall shapes, symbols and images.

I work well with diagrams and maps.

I can juggle mentally lots of information and many ideas.

I readily memorize information.

People can count on me to recall important information and events.
I gather and understand a lot of information through words and text.

I have good control of large body movements, such as for sports or dance.

I collaborate effectively in a range of settings.

I express myself well with words, sentences, and passages.

I have good control of hand movements, like for art or playing musical instruments.

Handwriting comes naturally and easily to me.
I nurture positive relationships with others.

I am good at reading the mood of people and situations.

I usually understand ideas and concepts quickly and easily.

I apply logic and reasoning to most challenges.

I readily generate innovative ideas.
Next Day Application
Activity Analysis: ___

<table>
<thead>
<tr>
<th>What do I want students to do?</th>
<th>What do I see happening?</th>
<th>What are the neurodevelopmental challenges?</th>
<th>What can I change to support learning?</th>
<th>What will a “win” look like?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• Attention</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▶ Mental Energy Controls</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▶ Processing Controls</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▶ Production Controls</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Higher Order Cognition</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▶ Conceptualization</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▶ Creative Thinking</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▶ Applied Reasoning</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Language</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▶ Receptive Language</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▶ Expressive Language</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Memory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▶ Active Working Memory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▶ Long-Term Memory Consolidation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▶ Long-Term Memory Access</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Neuromotor Functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▶ Fine Motor Function</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▶ Graphomotor Function</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Social Cognition</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Spatial Ordering</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Temporal-Sequential Ordering</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Demystification Cards

You may photocopy these masters to make cards to help students identify their neurodevelopmental strengths and weaknesses. Some educators have chosen to make copies of the cards on colored paper, assigning a color per construct. You may also opt to laminate them for recurrent use. Others have made copies of the cards for students to keep for ongoing exploration and assessment.

Tailor use of the demystification cards to grade level and the unique needs of each student. Some students may benefit more from working independently. Other students may need more direct assistance from you. Still others may thrive in a group discussion. Keep the neurodevelopment demands of using the cards in mind as you explore what will be most effective for each student. For example, placing the cards in some kind of priority order utilizes Temporal Sequential Ordering.

Possible Applications:

- Invite the student to sort the deck into piles or sequences according to what is easy, medium, or hard for them.

- Invite a class to sort the cards at the start of a particularly challenging unit to assess how to support the needs of different students or the class as a whole.

- Ask the student to identify the specific ways selected constructs and/or functions come in to use for particular subjects or activities and list them on the back of the cards and/or discuss them with you.

- Work with students to re-sort the cards after agreed upon strategies have been tried to assess how effective the strategies have been.
ATTENTION
Maintaining mental energy for learning and work
Absorbing and filtering incoming information
Overseeing the quality of academic output and behavior

MEMORY
Briefly recording new information
Mentally juggling information while using it to complete a task
Storing and then recalling information at a later time

LANGUAGE
UNDERSTANDING AND USING WORDS
Understanding incoming oral and written information
Communicating ideas orally and in writing

SPATIAL ORDERING
VISUAL THINKING
Understanding information that is presented visually
Generating products that are visual
Organizing materials and spaces
handwriting
Coordinating muscles needed for
Controlling finger and hand movements
Using large muscles in a coordinated manner

CONTROLLING MOVEMENT

neuromotor functions

Keeping time and schedules
Meaningful order
Generating products arranged in a sequence
Understanding the order of steps

KEEPING TRACK OF TIME/ORDER

temporal-sequential ordering

controlling movement

Influential people
Nurturing positive relationships with
Cooperative manner
Working and playing with others in a
t

MAKING AND KEEPING FRIENDS

social cognition

Complex problems
Using logical approaches to address
Generating original ideas
Comprehending concepts

COMPLEX THINKING

higher order cognition

motor function

controlling movement
Mental Energy Controls

Brain Fuel
Maintaining mental energy for learning and work
Being vigilant for intake of information
Allocating a reliable flow of energy and work
Maintaining mental energy for learning

Directing Input
Processing Controls
Absorbing and filtering incoming information
Discriminating between more and less important inputs
Being vigilant for intake of information
Maintaining mental energy for learning

Previewing Likely Outcomes
Inhibiting impulses and working at appropriate rates
Overseeing the quality of academic output and behavior
Overseeing output
Self-monitoring output and work

Deeper Understanding Ideas
Conceptualization
Comprehending concepts, including their critical features
Connecting ideas, even across topics and subjects
Making necessary revisions to concepts and their ideas
Using incoming information to trigger new and duration
Focusing with sufficient intensity
Discriminating between more and less information
Understanding ideas
Self-monitoring output and work
Creative Thinking

- Generating original ideas and potential solutions
- Thinking independently

Applied Reasoning

- Using logical approaches to address complex problems and challenges
- Reaching solutions through problems and challenges

Language Output

- Expressive language
- Comprehending sentences and extended pieces of language
- Processing the language sounds that compose words
- Appreciating the meanings of words and word components

Receptive Language

- Comprehending incoming oral and written information
- Understanding incoming oral and written language
- Articulating and speaking with clarity, intonation, and inflection
- Using language to develop and extend thoughts

Thinking Indepedently

- Generating original ideas and potential solutions
Applied Reasoning
Thinking Through Problems and Challenges

Creative Thinking

Expressive Language
Language Output

Receptive Language
Language Input
Active Working Memory
- Mentally manipulating information
- Handling simultaneous task components
- Linking short- and long-term intentions and needs

Long-Term Memory Consolidation
- Storing information for recall at a later time
- Handing simultaneous task components
- Mentally juggling information while using it to complete a task

Retrieving Information
- Recalling information after an extended delay, including facts, skills, and experiences

Fine Motor Function
- Finger location during motions
- Getting adequate feedback about hand/movements
- Recall movement motions and hand movements

Long-Term Memory Access
- Storing information
- Using schema, categories, and strategies for effective filing

Movements
- Controlling finger and hand movements
- Recalling movement patterns

Multiple-Choice Option or a Face
- Recognizing material, such as a face
- Identifying facts, skills, and experiences

Fine Motor Function | Hand
- Controlling finger and hand movements
- Recalling movement patterns
- Getting adequate feedback about hand/movements

Long-Term Memory | Access
- Storing information for recall at a later time
- Handing simultaneous task components
- Mentally juggling information while using it to complete a task

Retrieving Information
- Recalling information after an extended delay, including facts, skills, and experiences

Active Working Memory
- Mentally manipulating information
- Handling simultaneous task components
- Linking short- and long-term intentions and needs
Active Working Memory
Mentally Manipulating Information

Long-Term Memory Access
Retrieving Information

Fine Motor Function
Hand Movements

Long-Term Memory Consolidation
Storing Information
Graphomotor Function

Handwriting Control

Coordinating muscles needed for handwriting

Recalling handwriting movement patterns

Getting adequate feedback about hand/pencil location during writing motions and letter shapes

Recalling handwriting movement patterns
Graphomotor Function
Handwriting Control
Next Day Application: A Conversation Roadmap

<table>
<thead>
<tr>
<th>Steps</th>
<th>Key Questions to Ask</th>
<th>Key Points to Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Explain the purpose of the conversation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tips and reminders:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Focus on the student’s success.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Affirm the student’s uniqueness.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Explain that you’ll work together as a team.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Stress that you want and value his/her input.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Personalize by sharing some of your own strengths and weaknesses.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Clarify strengths and affinities.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tips and reminders:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Begin with a notable, authentic strength.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Give evidence.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Show enthusiasm for what the student likes to do.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Discuss challenges.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tips and reminders:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Label the observable phenomena not the student.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Stick to one or two challenges.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Listen actively.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Let the student do most of the talking.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Discuss strategies.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tips and reminders:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Explain relevant part(s) of the ND framework in simple, age appropriate terms.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- Encourage and applaud the student’s ideas.
- Build on as many of the student’s ideas as possible.

5. Summarize and check for understanding.
Tips and reminders:
- Summarize orally and/or visually depending on needs of the student.
- Look for cues to do this throughout the conversation.
- Review who will do what and when.
- Agree on how you’ll know if things are working.
- Plan for follow-up.

How might this student respond during this conversation?

How might you best handle his/her responses?

What beliefs will be particularly important to demonstrate with this student?
Next Day Application: Hints for Discussing Neurodevelopmental Constructs

Discussion Hints for All Kinds of Minds

Experience has shown that it can be useful to touch on the following points in conversations with students. Use these hints selectively to tailor the conversations to the needs of each student.

ATTENTION

- Some students have a lot of trouble concentrating. When they try to concentrate some feel very tired or burnt out.
- The fact that someone has problems with concentration does not mean that the person is stupid. Some of the smartest people in the world have attention problems.
- Students with attention issues don’t have problems with attention all the time.
- Some students with attention problems are very active. Moving around can help them concentrate and stay more alert.

HIGHER ORDER COGNITION

- A concept is a group of things or ideas that go together. To understand the concept is to know its important features and how they determine the examples of the concept.
- Different people are good at thinking about different kinds of ideas. Subject matter can affect how well someone thinks about concepts.
- Everyone possesses a certain degree of imagination and creativity.
- Asking good questions can really help to understand something.

LANGUAGE

- There are many ways to succeed in life without great language. The adult world needs people who know how to think without language, to picture things, to build and create, and understand how things work.
- There is a big difference between understanding an idea and being able to put it into words.
- It may be easier for some students to understand what other people are saying or to say things themselves.

MEMORY

- There is a difference between understanding information and remembering it.
- Much more memory is needed to do well in school than is needed to do well when grown up and in a career.
- Everyone struggles with memory at one time or another.
NEUROMOTOR FUNCTION

- Some students’ muscle systems are very well-coordinated with their brains. These are often students who do very well in sports.
- Different kinds of sports have different demands, so although a student struggles with one sport, he may excel at another that is a good match with his strengths.
- It is possible to be very good at fixing or drawing, but have trouble with handwriting.
- Physical activities can help students feel good about themselves through achieving a different kind of satisfaction or effectiveness. Such activities include picking the right sport or musical instrument, creating art, designing projects, or fixing things.

SOCIAL COGNITION

- Having friends and being popular are not the same thing.
- Discussion of what is needed to keep a close friend and what close friends expect from one another can be valuable.
- Labeling people can have damaging consequences.

SPATIAL ORDERING

- Spatial Ordering can help people in many careers, such as art, design, mechanics, engineering, and athletics.
- There are organizational aspects of Spatial Ordering, like organizing space in lockers, desks and notebooks, or just remembering where things are.
- Many students with attention, language or memory challenges have relative strengths in Spatial Ordering.

TEMPORAL SEQUENTIAL ORDERING

- Sequences and memory work together. Many different sequences need to be remembered in and outside of school.
- Time management, or getting organized within a time frame, and sequencing are linked.
- There can be a relationship between sequencing and language, like retelling the events in a story in the right order.
Next Day Application: Common Combinations

Several neurodevelopmental constructs and functions can impede a student’s communication of ideas. Below are some commonly encountered combinations of strengths and weaknesses. Each combination is accompanied by 2 ideas for project formats suited to that combination. You may record other ideas, perhaps from your own experience, in the blank spaces.

<table>
<thead>
<tr>
<th>(-) Attention: Mental Energy Controls</th>
<th>(+) Expressive Language</th>
<th>(-) Expressive Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>• bulleted list</td>
<td>• diagram</td>
<td></td>
</tr>
<tr>
<td>• skit</td>
<td>• model</td>
<td></td>
</tr>
<tr>
<td>•</td>
<td>•</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(-) Active Working Memory or Attention: Production Controls</th>
<th>(+) Expressive Language</th>
<th>(-) Expressive Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>• outline</td>
<td>• create a game</td>
<td></td>
</tr>
<tr>
<td>• graphic organizer</td>
<td>• PowerPoint presentation</td>
<td></td>
</tr>
<tr>
<td>•</td>
<td>•</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(-) Graphomotor Function</th>
<th>(+) Expressive Language</th>
<th>(-) Expressive Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>• oral presentation</td>
<td>• demonstration</td>
<td></td>
</tr>
<tr>
<td>• dictated/transcribed report</td>
<td>• re-enactment</td>
<td></td>
</tr>
<tr>
<td>•</td>
<td>•</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(-) Higher Order Cognition: Conceptualization</th>
<th>(+) Expressive Language</th>
<th>(-) Expressive Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>• collaborative project</td>
<td>• dramatic reading</td>
<td></td>
</tr>
<tr>
<td>• interview an expert</td>
<td>• photo essay</td>
<td></td>
</tr>
<tr>
<td>•</td>
<td>•</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(+) Higher Order Cognition: Conceptualization</th>
<th>(+) Expressive Language</th>
<th>(-) Expressive Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>•</td>
<td>• crossword puzzle</td>
<td></td>
</tr>
<tr>
<td>•</td>
<td>• collage</td>
<td></td>
</tr>
</tbody>
</table>
Next Day Application: Changing it Up with Different Forms of Expression

This chart identifies neurodevelopmental demands for common student assignments. Traditional ways to communicate ideas in writing involve three key constructs: **language, memory, and higher-order cognition**. When a student struggles with these constructs, look for strengths in other constructs to identify assignments that will allow students to more effectively demonstrate their ideas and what they have learned.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>blogs</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>book report</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>creative writing</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>diagrams</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>email</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>essays</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>group discussions</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>instant messaging</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>interpretative dance</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>models/dioramas</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>paintings</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>posters</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PowerPoint</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>oral presentations</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sculpture</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>skits</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>social networks</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>songs</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lab reports</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>twitter (microblog)</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>web pages</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>written tests</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>
Next Day Application: Evaluation Plan

DIRECTIONS

Use the flow chart to help you evaluate the success of the strategy you implemented.

Strategy: What strategy (strategies) did you implement?
Timeline: What was the timeline for implementing the strategy? (1 day, 2 weeks, a month, etc).
ND Demands of Strategy: Consider and note the ND demands the strategy may place on students.

Win: Anticipated Outcome- What did you hope the outcome would be? (Refer back to what a ‘win’ would look like.)
Success Criteria: Define your success criteria. Is it improved test scores, increased student attentiveness, more complete assignments, fewer referrals for behavioral issues, etc.? Be as specific as possible.

Actual Outcome: Observable Phenomena: Describe in specifics what was observed as the strategy was implemented.
Evidence: Refer to success criteria determined earlier and describe results. Did test scores go down? Was there a change in student attentiveness? Include input from the student(s) -- their thoughts about what worked or not and why.

COMPARE: the anticipated outcome to the actual outcome.
DECIDE: on next steps.

Next Steps: Choose to continue the strategy as is, continue it with modifications (and note possible modifications) or adopt a new strategy. Adopting a new strategy takes you back to the beginning of the Management by Profile process.

The points below can help guide your thinking.
• When evaluating the relative success of a strategy, consider to what degree it succeeded and why. Be careful not to simply say “yes, it worked” or “no, it didn’t work.
• Limit your evaluation plan to one or two strategies.
• Gather evidence to support your contention about the success or lack of success. What did you see or notice? Part of your evidence should be responses from the student(s) who are impacted by the strategy. (Consider gathering evidence on a short term basis, once a week rather than once a month).
• It is also important to always consider what happens next.
Win

Success Criteria
•
•
•

Next Steps

☐ Continue, no modifications

☐ Continue, with modifications

Modifications

☐ Implement new strategy

Next Check in Date

Strategy

Timeline

ND Demands of Strategy

Actual Outcome: Observable Phenomena

Evidence

COMPARE

DECIDE

© 2009 All Kinds of Minds

NEXT DAY APPLICATIONS